Exercise 36

(a) Sketch the vector field $\mathbf{F}(x, y)=\mathbf{i}+x \mathbf{j}$ and then sketch some flow lines. What shape do these flow lines appear to have?
(b) If parametric equations of the flow lines are $x=x(t), y=y(t)$, what differential equations do these functions satisfy? Deduce that $d y / d x=x$.
(c) If a particle starts at the origin in the velocity field given by \mathbf{F}, find an equation of the path it follows.

Solution

The vector field $\mathbf{F}(x, y)=\mathbf{i}+x \mathbf{j}$ is shown below along with several flow lines in red.

Each of the vectors in the field is tangent to a possible flow line, similar to the way a velocity vector is tangent to the corresponding position vector.

$$
\mathbf{F}(x(t), y(t))=\frac{d \mathbf{X}}{d t}=\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle
$$

Set $d x / d t$ equal to the x-component of \mathbf{F} and set $d y / d t$ equal to the y-component of \mathbf{F}.

$$
\frac{d x}{d t}=1 \quad \frac{d y}{d t}=x
$$

From this first ODE, $d x=d t$, which makes the second one

$$
\frac{d y}{d x}=x .
$$

Integrate both sides with respect to x.

$$
y(x)=\frac{1}{2} x^{2}+C
$$

Use the fact that the flow line has to go through $(0,0)$ to determine C.

$$
0=\frac{1}{2}(0)^{2}+C \quad \rightarrow \quad C=0
$$

Therefore,

$$
y(x)=\frac{1}{2} x^{2} .
$$

